Authors |
Zharkova Tat'yana Vasil'evna, Postgraduate student, Kazan (Volga region) Federal University (Kazan, 18 Kremlyovskaya str.), zharkova89@yandex.ru
Kazantsev Andrey Vital'evich, Candidate of physical and mathematical sciences, associate professor, sub-department of mathematical statistics, Kazan (Volga region) Federal University (Kazan, 18 Kremlyovskaya str.), kazandrey0363@rambler.ru
|
Abstract |
Let Δ ={(α,β)∈R2 :α + β > 0,α ≤1,β ≤1} and (α,β)∈Δ . Janowski class S *[α,β] is the class of the functions f holomorphic in D and so that f (0) = f ′(0) −1= 0 and ζf ′(ζ) / f (ζ) (1+ βζ)/(1−αζ) , ζ∈D . Let S *[α,β] be the
subclass of S *[α,β] with the condition f ′′(0) = 0 defining the zero root of the Gahov equation f ′′(ζ) / f ′(ζ) = 2ζ/(1− | ζ |2 ) . The domain of uniqueness for the family S *[α,β], (α,β)∈Δ , is the set Δ ⊂ Δ such that for any (α,β)∈Δ and f ∈S *[α,β] the Gahov equation has the unique root. The maximal (on inclusion) domain of uniqueness for the family S *[α,β], (α,β)∈Δ , is find. Let Δ′ = Δ′0 ∪Δ1∪Δ′2 , where Δ′0 ={(α,β)∈Δ:|2β − 3α|≤ 3, 3(α + β) ≤ 2}, Δ1 ={(α,β)∈Δ: 2β − 3α > 3} and Δ′2 = ={(α,β)∈Δ: 2β − 3α < −3, α < α(β), β∈(−1,−1/ 5)}, while α(β) =1− (1+ β)3 / /[(1+ β)2 −16β] , β∈(−1,0) . Theorem. The set Δ′ is the maximal domain of uniqueness for the family of the classes S *[α,β], (α,β)∈Δ . Thus, the article adduces the full and complete solution for the problem posed and particularly solved in 1998 by the second author. The impact of the result: 1) two-parametrical series of the uniqueness conditions is obtained; 2) new property of the well-known classes of the univalent functions is established. The proving method is based on the use of the Schwarz lemma, the calculation of the sharp constant in the estimate of the left-hand side of Gahov equation, and the analysis of the dependence of the constant mentioned on the parameters.
|
References |
1. Gakhov F. D. Kraevye zadachi [Boundary-value problems]. Moscow: Nauka, 1977, 640 p.
2. Fridman A. Variatsionnye printsipy i zadachi so svobodnymi granitsami [Variational principles and problems with free boundaries]. Moscow: Nauka, 1990, 536 p.
3. Gakhov F. D. Ob obratnykh kraevykh zadachakh [On the issue of inverse boundatyvalue problems]. DAN SSSR. 1952, vol. 86, no. 4, pp. 649–652.
4. Rusheweyh St., Wirths K.-J. Math. Z. 1982, vol. 180, pp. 91–106.
5. Aksent'ev L. A. Izvestiya vuzov. Matematika [University proceedings. Mathematics]. 1984, no. 2, pp. 3–11.
6. Kazantsev A. V. Uchenye zapiski Kazan-skogo universiteta. Fiziko-matematicheskie nauki [Kazan university memoir. Physical and mathematical sciences]. 2011, vol. 153, no. 1, pp. 180–194.
7. Haegi H. R. Compositio Math. 1950, vol. 8, F. 2, pp. 81–111.
8. Kinder M. I. Izvestiya vuzov. Matematika [University proceedings. Mathematics]. 1984, no. 8, pp. 69–72.
9. Aksent'ev L. A., Kazantsev A. V., Kiselev A. V. Izvestiya vuzov. Matematika [University proceedings. Mathematics]. 1984, no. 10, pp. 8–18.
10. Aksent'ev L. A., Kazantsev A. V., Kinder M. I., Kiselev A. V. Trudy seminara po kraevym zadacham. Vyp. 24 [Proceedings of the seminar on boundary-value problems. Issue 24]. Kazan: Kazan. un-t, 1990, pp. 39–62.
11. Aksent'ev L. A., Kazantsev A. V., Popov N. I. Izvestiya vuzov. Matematika [University proceedings. Mathematics]. 1995, no. 6, pp. 3–15.
12. Goluzin G. M. Geometricheskaya teoriya funktsiy kompleksnogo peremennogo [Geometric theory of complex variable functions. 2nd edition]. 2-e izd., pererab. i dop. M: Nauka, 1966, 628 p.
13. Janowski W. Ann. Polon. Math. 1973, vol. 28, pp. 297–326.
14. Aksent'ev L. A., Kazantsev A. V., Popov N. I. Izvestiya vuzov. Matematika [University proceedings. Mathematics]. 1998, no. 8, pp. 3–13.
|